## CONTINUED EVALUATION OF NORTH CAROLINA FELDSPAR ORES - REPORT 3 July 1969 Progress Report

(Lab. Nos. - See Table 1) - Book 224 by J. Philip Neal, Jerry L. Bundy & Leonard Wiener

### Description of Project

This report is the third of a series describing the evaluation of possible new sources of feldspar in North Carolina, begun in the spring of 1967. Test and evaluation procedures are substantially identical to standard procedures described in Section B of the December 1967 Progress Report. The two reports preceding this one were: 1) that of December 1967, just cited, and 2) Section B, December 1968 Progress Report.

### Location and Description of Samples

Table 1 gives general descriptions of locality and ore in the case of each sample. It is a continuation of Table 1 in both of the two previous reports. Table 2 of this report is likewise a continuation of Table 2 in both preceding reports, and it gives quantitative data on concentrates obtained.

#### Best Ores from Program to Date

An attempt is made here to select the best samples from this and the previous two reports (December 1967 and December 1968) to see if any particular areas of North Carolina appear to contain more promising feldspar ores. Study of the quantitative data developed since 1967 shows

that, among the more promising ores, there can be either a relatively high yield of feldspar analyzing perhaps five to six percent  $K_20$ , or sometimes a lower yield assaying in the 12 to 13 percent  $K_20$  range, with intermediate yields having intermediate  $K_20$  analysis. Feldspar having high  $K_20$  analysis is of greater economic value, so this helps to offset lower yield. In appraising samples, therefore, both yield and  $K_20$  level should be considered. Some yardstick for evaluation of many feldspar products of varying yields and assays is needed and an attempt to meet this need is hereby made.

In any given test, the percent yield of nonmagnetic feldspar (weight percent of original sample) can be multiplied by the percent  $K_20$  in the total feldspar product to secure an empirical rating figure. With an ore having a low feldspar yield but high  $K_20$  assay, the rating figure may come close to that of another ore having a higher yield but lower  $K_20$  assay. Table 3 lists those samples which, on this basis for evaluation, appear most promising. For the time being the degree of success in removal of iron minerals is not being considered. Additional research along this line may be needed on selected samples. In any event it appears that the more promising samples were generally more easily beneficiated in this respect.

Using the rating system mentioned, an ore with a feldspar yield of 20 percent and with a  $K_2$ 0 assay of 14 percent would have a rating of 280. A yield of 45 percent with an assay of about 6.25 percent  $K_2$ 0 would also score 280. In compiling Table 3, the rating figure of 280 was arbitrarily selected as the minimum acceptable. Alaskite feldspar ore

Location and Description of Forty-Seven Samples Processed

December 1968 to July 1969

| Field<br>Sample No. | Lab<br>Sample No. | General Location or Source*                                       | Description of Ore                            |
|---------------------|-------------------|-------------------------------------------------------------------|-----------------------------------------------|
| FG-47               | 3216              | Henderson Co., on Turkey Mtn.Rd.                                  | Weathered Whiteside granite                   |
| -                   | 3311              | Davie Co., near Smith Grove                                       | Hard foliated pink granite                    |
| FG-48               | 3338              | Davidson Co., at Boone's Cave                                     | Semi-weathered porphyrite granite             |
| FG-49               | 3339              | Ditto                                                             | Well-weathered porph.granite                  |
| FG-50               | 3340              | Davidson Co., near intersection of Rds. 1167 and 1162             | Weathered porphyritic granite                 |
| FG-51A              | 3341              | Davidson Co., same general location                               | Ditto, somewhat finer-<br>grained than 3340   |
| FG-51B              | 3342              | Davidson Co., same general location                               | Ditto, somewhat coarser-<br>grained than 3340 |
| FG-52               | 3343              | Davidson Co., intersection of Rd. 1186 and Gobble Creek           | Weathered porph. gran.                        |
| FG-53               | 3344              | Davidson Co., near intersection of Rd. 1192 and U.S. 64           | Ditto                                         |
| FG-54A              | 3345              | Davidson County, old quarry on Rock Crusher Rd.                   | Weathered quartz monzonite                    |
| FG-54B              | 3346              | Ditto                                                             | Fresh quartz monzonite                        |
| FG-55               | 3347              | Davie Co., near intersection of N.C. 801 and U.S. 64              | Weathered porth.granite                       |
| FG-56               | 3348              | Davie Co., on N.C. 801, 2 mi.<br>N.E. of intersection with U.S.64 | Semi-weathered granite                        |
| FG-57               | 3349              | Davie Co., near intersection of Rds. 1650-1652                    | Semi-weathered porph.gran.                    |
| FG-58               | 3350              | Davie Co., Rd. 1617 near inter. with N.C. 801                     | Weathered porph. granite                      |
| FG-59               | 3351              | Davie Co., near intersection of N.C. 801 & Rd. 1801               | Semi-weathered granite gneiss                 |
| FG-60A              | 3352              | Davie Co., on Rd. 1819 near intersection with Rd. 1820            | Weathered porph. granite                      |
| FG-60B .            | 3353              | Davie Co., on Rd. 1819 near intersection with Rd. 1820            | Fresh porph. granite                          |
| FG-61               | 3354              | Davie Co., on Rd. 1822, south of intersection with Rd. 1819       | Semi-weathered porph.                         |
| FG-62               | 3355              | Davie Co., on N.C. 801 at<br>Dutchman's Creek                     | Ditto                                         |

(Table 1 continued on next page)

 $<sup>^{\</sup>star}$ Further details on location can be furnished

Table 1

## (continued from page 3)

## Location and Description of Forty-Seven Samples Processed December 1968 to July 1969

| Field<br>Sample No. | Lab<br>Sample No. | General Location or Source*                              | Description of Ore                                    |
|---------------------|-------------------|----------------------------------------------------------|-------------------------------------------------------|
| FG-63               | 3356              | Davidson Co., near intersection of Rd. 1440 and 1435     | Weathered porph. granite                              |
| FG-64               | 3357              | Davidson Co., near intersection of N.C. 150 and Rd. 1441 | Semi-weath. porph. granite                            |
| FG-65               | 3358              | Davidson Co., near intersection of Rds. 1485 and 1489    | Weathered porph. granite                              |
| FG-66               | 3359              | Davidson Co., on Rd. 1493 at<br>Muddy Creek              | Weathered granite, slightly porphyritic               |
| FG-67A              | 3360              | Iredell Co., on Rd. 1109 on<br>east bank of Lake Norman  | Weathered coarse monzonite                            |
| FG-67B              | 3361              | Ditto                                                    | Semi-weath. coarse monzonite                          |
| FG-68               | 3362              | Iredell Co., intersection of Rd. 1153 and Coddle Creek   | Weath. porph. granite                                 |
| FG-69               | 3363              | Davidson Co., near intersection of Rd. 1155 and N.C. 150 | Semi-weath. porph. granite                            |
| FG-70               | 3364              | Davidson Co., near intersection of N.C. 150 and Rd. 1499 | Semi-weath., slightly porphyritic granite             |
| FG-71               | 3365              | Davidson Co., 1/2 mile south of Rds. 1813 and 1803       | Weath. qtz. monzonite                                 |
| FG-72               | 3366              | Davidson Co., near intersection of Rds. 1516 and 1517    | Ditto                                                 |
| FG-73               | 3367              | Davidson Co., near intersection of Rds. 1516 and 1520    | Porph. granite, foliated                              |
| FG-74               | 3368              | Davidson Co., near intersection of Rds. 1493 and 1490    | Slightly porphyritic granite                          |
| FG-75               | 3369              | Davidson Co., at intersection of Rds. 1700 and 1798      | Qtz. monzonite at contact of amphibolite & Car.gneiss |
| FG-76               | 3370              | Davidson Co., near intersection of Rds. 1176 and 1172    | Hand-picked crystals of relatively pure feldspar      |
| FG-82               | 3475              | McDowell Co., east of inter.<br>of Rds. 1108 and 1106    | Weath. porphyroblastic granite gneiss                 |
| FG-83               | 3476              | Buncombe Co., near intersection of N.C. 9 and Rd. 2797   | Hard granite gneiss                                   |
| FG-84               | 3477              | Ditto                                                    | Weathered equivalent of previous                      |
| FG-85               | 3478              | Buncombe Co., on N.C. 9 near Broad River Ch.             | Semi-weathered granite                                |
| FG-86               | 3479              | Buncombe Co., near intersection of Rd. 2802 and N.C. 9   | gneiss<br>Weathered gran. gneiss                      |

(Table 1 continued on next page)

<sup>\*</sup>Further details on location can be furnished

Table 1

## (continued from page 4)

# Location and Description of Forty-Seven Samples Processed December 1968 to July 1969

| Field<br>Sample No. | Lab<br>Sample No. | General Location or Source*                            | Description of Ore                         |
|---------------------|-------------------|--------------------------------------------------------|--------------------------------------------|
| FG-87               | 3480              | Buncombe Co., near intersection of Rd. 2802 and N.C. 9 | Fresh equivalent                           |
| FG-88               | 3481              | Buncombe Co., near intersection of Rd. 2802 and N.C. 9 | of 3479<br>Weath. gran. gneiss             |
| FG-89               | 3482              | Buncombe Co., at intersection of N.C. 9 and Rd. 2797   | Hard chunks, fresh                         |
| FG-90               | 3483              | Buncombe Co., near intersection of N.C. 9 and Rd. 2797 | gran. gneiss<br>Weath. gran. gneiss        |
| FG-91               | 3484              | Ditto                                                  | Ditto                                      |
| -                   | 3487              | Mitchell Co., Chalk Mountain                           | "Horse" of biotite                         |
| FG-92               | 3493              | Buncombe Co., near Leicester<br>Post Office            | schist, from mine Pyroxene-bearing granite |

<sup>\*</sup> Further details on location can be furnished

Table 2

Quantitative Results, Forty-Seven Samples Processed, Dec. 1968 to July 1969

|                |              | 75 H      | 77 "O       | 55 "A        | ١    |       |            |
|----------------|--------------|-----------|-------------|--------------|------|-------|------------|
| <b></b> 13     |              | FP #1     | FP #2       | FP #3        | MD   | Slime | Nonmag     |
| Field          | Lab          | Micaceous | Fe-Minerals | Feldspar     | Qtz  | Loss  | Spar       |
| Sample No.     | Sample No.   | % Wt      | <u>% Wt</u> | % Wt         | % Wt | % Wt  | % of Hd.Fd |
| FG-47          | 3216         | 3.7       | 8.7         | 25.4         | 32.9 | 29.3  | 19.8       |
| <u>.</u>       | 3311         | 1.1       | 8.0         | 51.6         | 14.5 | 24.9  | 45.3       |
| FG-48          | 3338         | 7.1       | 7.9         | 53.2         | 14.6 | 17.2  | 41.9       |
| FG-49          | 3339         | 3.5       | 14.2        | 43.5         | 16.8 | 22.0  | 38.8       |
| FG-50          | 3340         | 2.9       | 6.7         | 28.6         | 20.6 | 41.2  | 26.3       |
| FG-51A         | 3341         | 0.8       | 1.7         | 12.7         | 15.2 | 69.6  | 10.0       |
| FG-51B         | 3342         | 7.5       | 2.5         | 17.5         | 41.2 | 31.3  | 10.0       |
| FG-52          | 3343         | 0.8       | 1.0         | 19.1         | 31.8 | 47.2  | 16.2       |
| FG-53          | 3344         | 1.8       | 1.5         | 15.5         | 20.9 | 60.4  | 12.1       |
| FG-54A         | 3345         | 1.7       | 2.0         | 33.0         | 29.8 | 33.4  | 21.8       |
| FG-54B         | 3346         | 3.9       | 4.9         | 46.3         | 23.2 | 21.6  | 37.0       |
| FG-55          | 3347         | 6.5       | 2.7         | 29.3         | 28.8 | 32.7  | 23.2       |
| FG-56          | 3348         | 10.8      | 3.3         | 26.0         | 29.8 | 30.1  | 19.6       |
| FG-57          | 3349         | 8.7       | 35.0        | 10.5         | 20.6 | 25.2  | 9.4        |
| FG-58          | 3350         | 4.8       | 2.3         | 21.6         | 29.6 | 41.7  | 18.0       |
| FG-59          | 3351         | 3.8       | 5.1         | 53.9         | 20.1 | 17.1  | 42.9       |
| FG-60A         | 3352         | 9.9       | 5.1         | 31.0         | 30.3 | 23.8  | 25.4       |
| FG-60B         | 3353         | 10.0      | 13.1        | 18.1         | 37.3 | 21.5  | 14.6       |
| FG-61          | 3354         | 9.0       | 6.8         | 20.2         | 35.5 | 28.5  | 15.0       |
| FG-62          | 3355         | 10.6      | 11.2        | 27.9         | 18.6 | 31.7  | 25.8       |
| FG-63          | 3356         | 2.5       | 2.2         | 18.7         | 21.7 | 54.9  | 16.9       |
| FG-64          | 3357         | 11.1      | 14.1        | 25.4         | 24.0 | 25.4  | 21.7       |
| FG-65          | 3358         | 6.5       | 3.7         | 33.8         | 18.1 | 37.9  | 29.1       |
| FG-66          | 3359         | 4.2       | 3.7         | 45.3         | 22.0 | 24.9  | 43.1       |
| FG-67A         | 3360         | 7.1       | 3.0         | 32.4         | 29.0 | 28.5  | 28.6       |
| FG-67B         | 3361         | 6.8       | 3.9         | 30.6         | 35.9 | 22.8  | 27.1       |
| FG-68          | 3362         | 8.9       | 1.9         | 31.4         | 18.4 | 39.5  | 29.8       |
| FG-69          | 3363         | 8.3       | 6.1         | 31.6         | 27.4 | 26.6  | 29.9       |
| FG-70          | 3364         | 12.5      | 8.4         | 26.9         | 29.8 | 22.4  | 26.2       |
| FG-70<br>FG-71 | 3365         | 4.6       | 8.6         | 34.1         | 28.7 | 24.0  | 32.0       |
| FG-72          | 3366         | 5.3       | 3.7         | 35.5         | 33.2 | 22.3  | 32.3       |
| FG-72          | 3367         | 5.4       | 8.2         | 43.7         | 18.0 | 24.7  | 41.7       |
| FG-74          | 3368         | 2.4       | 1.2         | 19.1         | 24.1 | 52.2  | 17.9       |
| FG-75          | 3369         | - 0.9     | 4.7         | 44.7         | 22.1 | 27.6  | 40.1       |
| FG-76          | 3370         | 1.3       | 1.5         | 70.5         | 4.2  | 22.5  | 64.9       |
| FG-82          | 3475         | 10.3      | 3.6         | 32.3         | 16.3 | 29.2  | 30.7       |
| FG-83          | 3476         | 11.0      | 1.9         | 48.0         | 18.5 | 20.7  | 45.1       |
| FG-84          | 3477         | 6.4       | 3.6         | 34.8         | 24.5 | 30.7  | 32.5       |
| FG-85          | 3477<br>3478 | 5.6       | 2.3         | 44.8         | 20.9 | 26.2  | 42.6       |
| FG-86          | 3479         | 12.6      | 1.9         | 33.5         | 25.1 | 26.9  | 31.9       |
| FG-87          | 3480         | 6.7       | 2.0         | 48.1         | 23.7 | 19.5  | 46.2       |
|                | 3481         | 7.6       | 23.1        | ← 42.        |      | 26.4  |            |
| FG-88          |              | 11.6      | 5.1         | 38.6         | 21.2 | 23.5  | 35.7       |
| FG-89          | 3482         |           |             |              | 23.0 | 37.1  | 12.3       |
| FG-90          | 3483         | 26.2      | 0.6         | 13.1<br>40.9 | 24.8 | 26.3  | 37.5       |
| FG-91          | 3484         | 5.7       | 2.3         | 24.4         | 20.0 | 23.6  | 20.7       |
| £C 03          | 3487         | 20.7      |             |              |      |       |            |
| FG-92          | 3493         | 0.8       | 23.6        | 30.2         | 14.7 | 30.7  | 27.1       |

<sup>\*</sup>Listed only when  $K_20$  is at least 8.5% and nonmag, spar product is at least 19% of head feed

<sup>(1)</sup> Standard procedures did not produce good separations. Further tests could be run for improvement on the seven tests noted

Coarse Spar Fine Spar % of Screen Chemical Analysis Screen % of Chemical Analysis Class. Hd. Feed  $K_20$ Na<sub>2</sub>0  $Fe_2O_3$ Class. Hd. Feed  $K_20$ Na<sub>2</sub>0 Fe<sub>2</sub>0 +60 9.4 13.66 1.51 0.07 -60 10.4 13.30 1.73 0.07 +60 17.9 6.67 3.32 0.09 -60 27.4 6.79 3.32 0.07 +60 22.7 6.50 4.16 0.16 -60 19.2 6.50 4.55 0.12 +60 17.3 7.03 3.77 0.12 -60 21.5 6.76 4.16 0.12 +60 11.9 12.30 2.38 0.11 -60 14.4 10.10 3.46 0.10 +60 3.9 13.11 1.08 0.19 -60 6.1 13.11 1.08 0.17 +60 3.0 12.00 2.13 0.13 -60 7.0 10.79 2.87 0.13 +60 6.1 14.45 0.72 0.14 -60 10.1 14.13 0.73 0.13 +60 4.5 14.13 0.96 0.15 -60 7.6 13.51 0.96 0.15 +60 7,4 14.00 0.85 0.10 -60 14.4 12.58 1.93 0.11 +60 14.8 6.80 4.69 0.20 -60 22.2 6.53 4.91 0.11 +60 10.8 12.80 1.74 0.11 -60 12.4 10.90 2.86 0.11 +100 10.6 11.01 2.60 0.14 -100 9.0 7.34 4.06 0.07 -9.4 9.46 3.36 0.07 (No split made) +60 7.7 14.10 0.96 0.11 -60 10.3 13.50 1.43 0.12 +60 13.8 3.55 5.31 0.10 -60 19.1 4.07 5.31 0.07 +100 15.7 7.36 3.59 0.10 -100 9.7 6.29 4.81 0.09 +100 8.8 7.89 3.57 0.09 -100 5.8 6.01 5.06 0.09 +100 10.2 8.84 3.57 0.10 -100 4.8 6.67 5.03 0.09 +60 7.6 9.16 3.54 0.11 -60 18.2 8.25 3.87 0.08 +100 11.1 13.51 1.03 0.13 -100 5.8 13.20 1.03 0.11 +100 14.6 8.48 3.57 0.09 -100 7.1 6.50 4.44 0.09 +60 10.6 11.39 2.62 0.08 -60 18.5 9.91 3.09 0.08 +60 16.8 6.59 4.38 0.12 -60 26.3 5.09 5.38 0.09 +60 10.0 12.81 1.73 0.07 -60 18.6 11.51 2.40 0.05 +60 9.7 13.60 1.30 0.07 -60 17.4 11.30 3.28 0.06 +100 19.7 11.68 1.78 0.09 -100 9.1 2.11 11.30 0.08 +100 19.4 8.56 3.85 -100 0.10 10.5 6.48 4.50 0.08 +100 16.0 11.30 2.38 0.05 -100 10.2 7.98 3.60 0.04 +60 12.2 11.21 2.38 0.11 -60 19.8 9.95 2.99 0.06 +100 19.2 3.60 8.61 0.14 -100 13.1 6.07 5.81 0.07 +100 26.5 6.25 5.46 0.10 -100 15.2 5.07 6.12 0.09 +60 7.0 14.89 1.63 0.10 -60 10.9 13.33 1.36 0.04 +100 21.8 0.41 8.54 0.16 -100 18.3 0.41 8.14 0.15 +100 39.2 13.12 1.53 0.09 -100 25.7 12.60 2.09 0.08 +150 15.7 10.01 2.60 0.14 -150 15.0 8.52 3.68 0.12 +100 25.2 4.72 4.26 0.14 -100 19.9 5.47 4.36 0.07 +150 19.5 4.10 5.35 0.11 -150 13.0 4.95 5.41 0.10 +150 22.9 6.90 3.66 0.10 -150 19.7 6.68 4.72 0.10 +100 13.0 3.98 6.22 0.13 -100 18.9 4.42 6,22 0.13 +150 28.6 3.75 6.77 0.05 -150 17.6 4.44 6.75 0.05 (No spar float. Spar plus quartz analysis, nonmag +150 15.0 4.02 6.71 0.07 -150 20.7 6.26 5.62 0.07 +100 6.2 8.83 3.57 0.10 -100 6.1 8.60 3.57 0.08 +150 21.8 8.36 3.31 0.06 -150 15.7 7.26 5.59 0.07 +150 15.6 0.41 8.04 0.16 -150 5.1 0.37 8.65 0.10 +100 15.7 9.85 2.58 0.15 -100 11.4 8.78 2.80 0.09

|                  | Quartz            |           | Nonmag                         | Composite Spar Analysis* |                                    |                                |
|------------------|-------------------|-----------|--------------------------------|--------------------------|------------------------------------|--------------------------------|
| Cher             | nical Ana         | alysis    | Quartz                         | %                        | %                                  | Approx.%                       |
| K <sub>2</sub> 0 | Na <sub>2</sub> 0 | $Fe_20_3$ | % of Hd. Fd.                   | <u> K<sub>2</sub>0</u>   | $\frac{\text{Na}_2\text{O}}{1.24}$ | Fe <sub>2</sub> 0 <sub>3</sub> |
| 0.07             | 0.02              | 0.03      | 27.8                           | 13.47                    | 1.24                               | 0.07                           |
| 0.19             | 0.10              | 0.01      | 12.4                           |                          |                                    |                                |
| 0.03             | 0.05              | 0.03      | 13.7                           |                          |                                    |                                |
| 0.14             | 0.22              | 0.12      | 14.8                           |                          |                                    |                                |
| 0.16             | 0.04              | 0.03      | 18.7                           | 11.10                    | 2.97                               | 0.11                           |
| 0.07             | 0.03              | 0.01      | 11.5                           |                          |                                    |                                |
| 5.30             | 2.94              | 0.11      | 34.4(1)                        |                          |                                    |                                |
| 0.07             | 0.04              | 0.017     | 28.2                           |                          |                                    |                                |
| 0.03             | 0.02              | 0.02      | 18.7                           |                          |                                    |                                |
| 0.13             | 0.06              | 0.04      | 25.7                           | 13.06                    | 1.56                               | 0.11                           |
| 0.20             | 0.20              | 0.04      | 19.4                           |                          |                                    |                                |
| 0.79             | 1.23              | 0.09      | 25.4                           | 11.78                    | 2.34                               | 0.11                           |
| 1.94             | 1.05              | 0.07      | 20.8(1)                        | 9.33                     | 3.27                               | 0.10                           |
| 2.66             | 2.34              | 0.05      | 19.4(1)                        |                          |                                    |                                |
| 1.05             | 0.60              | 0.11      | 23.8                           |                          |                                    |                                |
| 0.10             | 0.21              | 0.02      | 17.4                           |                          |                                    |                                |
| 2.66             | 2.34              | 0.07      | 26.8(1)                        |                          |                                    |                                |
| 3.58             | 3.30              | 0.08      | 33.5(1)                        |                          |                                    |                                |
| 4.14             | 2.98              | 0.08      | 33.5(1)<br>31.4 <sup>(1)</sup> |                          |                                    |                                |
| 0.10             | 0.17              | 0.02      | 17.0                           | 8.52                     | 3.77                               | 0.10                           |
| 0.20             | 0.23              | 0.10      | 20.0                           |                          |                                    |                                |
| 1.64             | 1.01              | 0.05      | 23.9                           |                          |                                    |                                |
| 0.08             | 0.06              | 0.02      | 16.2                           | 10.45                    | 2.92                               | 0.08                           |
| 0.05             | 0.14              | 0.01      | 20.4                           |                          |                                    |                                |
| 0.14             | 0.20              | 0.02      | 26.1                           | 11.97                    | 2.16                               | 0.06                           |
| 1.09             | 0.55              | 0.02      | 32.5                           | 12.12                    | 2.57                               | 0.07                           |
| 0.13             | 0.03              | 0.03      | 18.2                           | 11.17                    | 1.82                               | 0.09                           |
| 1.28             | 0.66              | 0.05      | 26.6                           |                          |                                    |                                |
| 0.26             | 0.29              | 0.02      | 29.3                           | 10.00                    | 2.85                               | 0.05                           |
| 0.08             | 0.03              | 0.02      | 28.1                           | 10.43                    | 2.76                               | 0.08                           |
| 2.15             | 1.39              | 0.06      | 32.1(1)                        |                          |                                    |                                |
| 0.05             | 0.06              | 0.03      | 17.4                           | •                        |                                    |                                |
| 0.08             | 0.06              | 0.03      | 23.5                           |                          |                                    |                                |
| 0.29             | 0.05              | 0.05      | 20.8                           |                          |                                    |                                |
| 1.09             | 0.64              | 0.17      | (No mag. sep.)                 | 12.91                    | 1.75                               | 0.09                           |
| 0.15             | 0.07              | 0.11      | 15.2                           | 9.12                     | 3.13                               | 0.13                           |
| 0.16             | 0.12              | 0.06      | 17.7                           |                          |                                    | <del>-</del>                   |
| 0.16             | 0.16              | 0.05      | 23.0                           |                          |                                    |                                |
| 0.14             | 0.09              | 0.06      | 19.8                           |                          |                                    |                                |
| 0.07             | 0.04              | 0.07      | 24.3                           |                          |                                    |                                |
| 0.10             | 0.10              | 0.03      | 22.9                           |                          |                                    |                                |
| 0.23             | 6.46              | 0.13)     | 34.9(spar+c                    | ıtz)                     |                                    |                                |
| 0.07             | 0.09              | 0.04      | 20.1                           | •                        |                                    |                                |
| 0.04             | 0.07              | 0.05      | 22.2                           |                          |                                    |                                |
| 0.09             | 0.06              | 0.04      | 23.4                           |                          |                                    |                                |
| 0.05             | 0.24              | 0.03      | 19.2                           | ***                      |                                    |                                |
| 0.40             | 0.36              | 0.09      | 13.1                           |                          |                                    |                                |

.

from the Spruce Pine area yields in the neighborhood of 60 percent feldspar, assaying close to five percent  $K_20$ , thus being rated at 300. In another case, a spiral mica plant tailing which is beneficiated for feldspar contains about 25 percent feldspar assaying about 13 percent  $K_20$ , giving it a rating of 325. Thus, a rating cutoff point of 280 allows some margin below the rating of some commercial ores.

## Location of Best Ores

Table 4 gives the locations of all samples shown on Table 3.

Table 4 repeats some data from Table 1 of each of the three reports to date: December 1967, December 1968 and this one.

For further clarification, a map of North Carolina is furnished to depict the general areas of collection of these 21 most promising samples (Figure 1). All have been collected from the heavily-outlined areas on this map which have been numbered 1, 2, and 3.

## Geology and Mineralogy

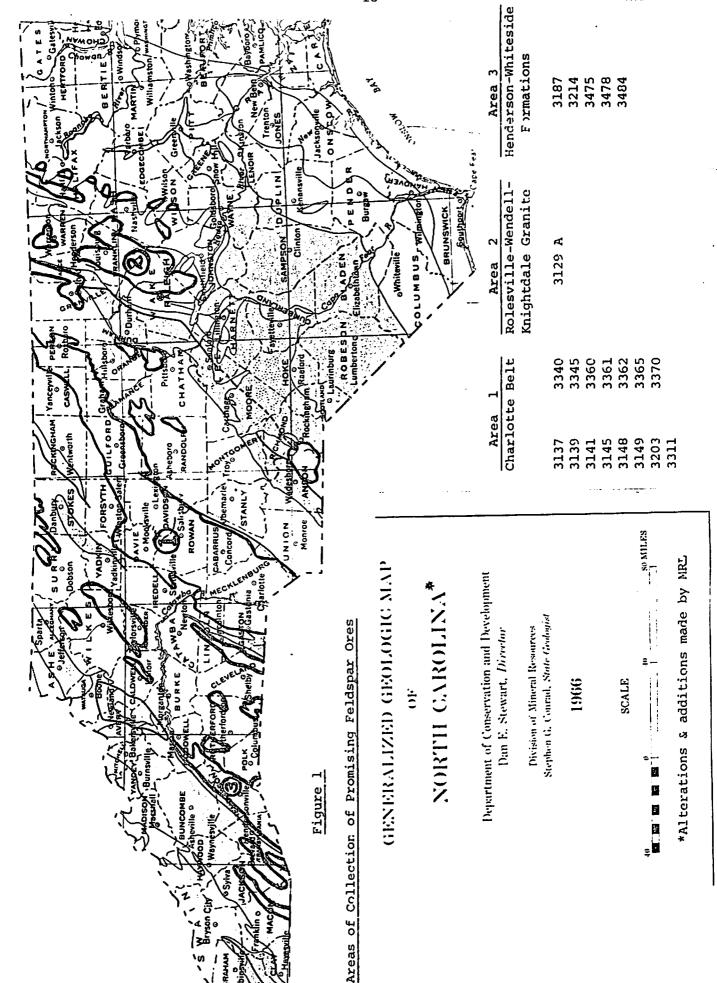
As stated in the above paragraph, the State of North Carolina was divided into three areas of primary investigations. These areas were chosen either because they were underlain by extensive granitic plutons or because the overall composition of the underlying rocks indicated high potassium feldspar content.

Other geologic belts of granitic gneisses and granitic plutons, such as the Cranberry, Blowing Rock, Max Patch, and Beech granite gneisses and the series of granitic plutons east of Raleigh, are now being considered for feldspar evaluation, and in certain instances sampling is underway.

Table 3 Ratings of Best Feldspar Ores Processed to July 1969

|                   |                     | nmag. Spa               | r Product          |                                  |                      |
|-------------------|---------------------|-------------------------|--------------------|----------------------------------|----------------------|
| Lab<br>Sample No. | % Yield<br>From Ore | <u>% K<sub>2</sub>0</u> | Rating             | % Fe <sub>2</sub> O <sub>3</sub> | Progress Report Date |
| 3129A             | 56.2                | 6.0                     | 337(1)             | 0.07                             | December 1968        |
| 3137              | 35.3                | 8.6                     | 304                | 0.10                             | December 1967        |
| 3139              | 47.3                | 6.4                     | 303                | 0.09                             | December 1967        |
| 3141              | 30.2                | 10.5                    | 317                | 0.09                             | December 1967        |
| 3145              | 33.2                | 9.6                     | 319(2)             | 0,13                             | December 1967        |
| 3148              | 38.2                | 8.0                     | 305                | 0.13                             | December 1967        |
| 3149              | 34.0                | 10.8                    | 367 <sup>(3)</sup> | 0.10                             | December 1967        |
| 3187              | 32.3                | 10.8                    | 349                | 0.09                             | December 1967        |
| 3203              | 31.5                | 8.9                     | 280                | 0.14                             | December 1968        |
| 3214              | 28.3                | 12.6                    | 357                | 0,05                             | December 1968        |
| 3311              | 45.4                | 6.7                     | 304                | 0.08                             | July 1969            |
| 3340              | 26.3                | 11.3                    | 297                | 0.14                             | July 1969            |
| 3345              | 21.8                | 13.1                    | 286                | 0.11                             | July 1969            |
| 3360              | 28.6                | 12.0                    | 343                | 0.06                             | July 1969            |
| 3361              | 27.1                | 12.0                    | 325                | 0.06                             | July 1969            |
| 3362              | 27.5                | 11.6                    | 319                | 0.08                             | July 1969            |
| 3365              | 32.0                | 10.5                    | 336                | 0.09                             | July 1969            |
| 3370              | 64.8                | 12.9                    | 836 <sup>(4)</sup> | 0.09                             | July 1969            |
| 3475              | 30.4                | 9.4                     | 286                | 0.13                             | July 1969            |
| 3478              | 42.7                | 6.8                     | 290                | 0.10                             | July 1969            |
| 3484              | 37.5                | 7.9                     | 296                | 0.07                             | July 1969            |

<sup>(1)</sup> Highest rating, 5-8.5%  $K_20$  range (2) " 8.5-10%  $K_20$  range


<sup>(3) &</sup>quot; 10.0-12.0% K<sub>2</sub>0 range 11

<sup>(4) 11</sup> 12+ % K<sub>2</sub>O range - See also remarks

Table 4

Location and Description of Most Promising Samples

| Field       | Lab        |                                                                  |                             |
|-------------|------------|------------------------------------------------------------------|-----------------------------|
| Sample No.  | Sample No. | General Location or Source                                       | Description of Ore          |
| -           | 3129A      | Wake Co., Rolesville Quarry                                      | Granite fines, -1/8"        |
| FG-10       | 3137       | Rowan Co., Rockwell Quad., near                                  | White biotite-granite,      |
|             |            | inter. of Shives and Shupings                                    | weathered, from Starr       |
|             |            | Mill Roads                                                       | quarry                      |
| FG-12       | 3139       | Rowan Co., Statesville Quad.,                                    | Weathered granite, large    |
| EC 14       | 22/2       | near inter. of Rds. 1211 & 1533                                  | pieces of potash spar       |
| FG-14       | 3141       | Rowan Co., Statesville Quad.,                                    | Coarse-grained porph.       |
| FG-18       | 3145       | near inter, of Rds. 1350 & 1554                                  | granite                     |
| 10-10       | 3143       | Rowan Co., Statesville Quad.,                                    | Fine material, porphyritic  |
| FG-21       | 3148       | near inter. of Rds. 1954 & 1953<br>Rowan Co., Statesville Quad., | Describes to the transfer   |
|             | 3140       | near inter. Deals Creek & Rd.1910                                | Porphyritic biotite granite |
| FG-22       | 3149       | Rowan Co., Statesville Quad.,                                    | Crushed, weathered granite: |
|             |            | inter. of 3rd Creek & Rd. 1702                                   | Woodleaf quarry             |
| FG-30       | 3187       | Henderson Co., Horse Shoe Quad.,                                 | Soft, weathered Henderson   |
|             |            | 1 mi. north of Crab Creek Church                                 | granite gneiss              |
|             |            | on Rd. 1133                                                      | 8                           |
| FG-38       | 3203       | Cabarrus Co., northwest part of                                  | Weathered porphyritic       |
| no / =      |            | Co., edge of Kannapolis                                          | granite                     |
| FG-45       | 3214       | Henderson Co., Bane Rd., south                                   | Weathered Whiteside         |
|             | 2211       | of Tonawanda                                                     | granite                     |
| -<br>FG- 50 | 3311       | Davie Co., near Smith Grove                                      | Hard foliated pink granite  |
| rG-30       | 3340       | Davidson Co., near intersection                                  | Weathered porphyritic       |
| FG-54A      | 3345       | of Rds. 1167 and 1162                                            | granite                     |
| 10-5-1      | 2242       | Davidson Co., old quarry on Rock Crusher Rd.                     | Weathered quartz            |
| FG-67A      | 3360       | Iredell Co., on Rd. 1109 on                                      | monzonite                   |
|             | 3300       | east bank of Lake Norman                                         | Weathered, coarse monzonite |
| FG-67B      | 3361       | Ditto.                                                           | Semi-weath.coarse monzonite |
| FG-68       | 3362       | Iredell Co., intersection of                                     | Weath. porph. granite       |
|             | •          | Rd. 1153 and Coddle Creek                                        | "den. porph, granice        |
| FG-71       | 3365       | Davidson Co., 1/2 mile south                                     | Weath. qtz. monzonite       |
|             |            | of Rds. 1813 and 1803                                            |                             |
| FG-76       | 3370       | Davidson Co., near intersection                                  | Hand-picked crystals of     |
|             |            | of Rds. 1176 and 1172                                            | relatively pure feldspar    |
| FG-82       | 3475       | Buncombe Co., east of inter.                                     | Weath. porphyroblastic      |
| EC 05       | 2/.70      | of Rds. 1108 and 1106                                            | granite gneiss              |
| FG-85       | 3478       | Buncombe Co., on N.C. 9                                          | Semi-weathered granite      |
| FG-91       | 3484       |                                                                  | gneiss                      |
| -5 /1       | J-10-7     | of N.C. 9 and Rd. 2797                                           | Weath. gran. gneiss         |
|             |            | 04 H.O. 9 and Ru. 2/9/                                           |                             |



The following comments, however, will deal primarily with the three areas shown in Figure 1.

Rolesville - Wendell - Knightdale Area - The Rolesville-Wendell-Knightdale granite area which is shown in Figure 1 as Area 2, includes parts of Wake, Johnston, Franklin, Nash and Vance Counties.

The granite in the vicinity of the town of Rolesville at the Rolesville quarry is a massive light gray to pinkish-gray medium grained rock consisting of 30 percent quartz, 34 percent orthoclase and microcline, 28 percent plagioclase, seven percent biotite and one percent chlorite, sericite and apatite (Councill, R. J., 1954, p. 18).

Compositional variations of the granite in Area 2, i.e. increased orthoclase-microcline content and decreased plagioclase content, tend to justify further sampling.

No samples from the Wendell-Knightdale area have thus far been obtained. However, published data dealing with the composition of the granites in this area show the following compositional ranges: orthoclase 34 to 49 percent, microcline one to 11 percent, plagioclase 0 to 21 percent, quartz 32 to 42 percent, perthite two to five percent, biotite 0 to eight percent, and muscovite 0 to three percent (Councill, 1954, p. 20). The high orthoclase-microcline content strongly suggests a potential source of high potash feldspar.

Charlotte Belt - Area one comprises a portion of the Central Piedmont underlain by Paleozoic granitic intrusives, known collectively as the Charlotte Belt which extends from the North Carolina-South Carolina boundary in Mecklenburg and Gaston Counties, northeast to Person County. Area one is the most widely sampled of the three areas.

Generally, the Charlotte Belt consists of a wide variety of granitoid intrusive rocks ranging from syenite to quartz-monzonite. In the northern portion of the belt (Guilford, Alamance, Caswell, and Person Counties) the granitic rocks finger out into biotite gneisses, schists, and volcanic rocks. Within this area the wide variation in rock type and more mafic composition tend to make the feldspar products obtained higher in Fe<sub>2</sub>O<sub>3</sub> and lower in potash feldspar.

Approximately seventy samples for feldspar evaluation have been collected from the Charlotte Belt. The majority of these samples have come from Rowan, Davie, Davidson, Iredell, and Cabarrus Counties, which lie in the central portion of the Charlotte Belt. The granite plutons of interest in this area are as follows: the Salisbury granite, the Woodleaf granite, "the porphyritic granite", and the Landis granite.

The Salisbury granite (adamellite) from which samples 3132A-3137\*
were collected lies in south central Rowan County. The pluton covers an
area of approximately 18 square miles and is extensively quarried for
dimension granite. The granite is a massive to slightly foliated medium
grained rock which ranges in color from gray to pink to blue. The rock
consists of about 40 percent plagioclase, 26 percent potassium feldspar,
30 percent quartz with accessory biotite, muscovite, sphene, chlorite,
epidote, garnet, monazite, calcite, fluorite, and staurolite (Phillips,
E. L., 1967).

Of the samples collected from this pluton, Nos. 3132A, 3134B, 3135A, and 3137 gave the best feldspar concentrates. The average chemical analysis of these concentrates was 10.35 percent  $K_2O$ , 3.09 percent  $Na_2O$  and 0.11 percent  $Fe_2O_3$ . All of the above samples were weathered to the

<sup>\*</sup> Area locations of all samples taken are listed in Table 5

extent that the  ${\rm K}_2{\rm O}$  content was greatly increased over that of unweathered granite of the same type.

The potential of the Salisbury granite lies first in the possible utilization of the tailings from granite quarrying operations as a byproduct in the production of feldspar, and second in the location of an extensive uniformly weathered zone of granite which could be mined directly for feldspar.

The Woodleaf granite area is located in northwestern Rowan County and consists of a granite-gabbro complex with possible inclusions of volcanic rocks. Presently, tailing samples from the Woodleaf quarry are being evaluated for potential feldspar.

The Landis granite is a porphyritic granite located in the Landis-Kannapolis area of southwestern Rowan and northwestern Cabarrus Counties.

A smiliar granite outcrops a few miles northwest of this area, near Mt.

Ulla, Rowan County and is possibly an extension of the Landis granite.

The following description of the Landis granite was reported by Watson and Laney (1906, p. 95):

"....., a biotite granite composed principally of orthoclase, microcline and microperthitic intergrowths, much plagioclase, quartz and biotite. The biotite is much altered to chlorite and is frequently crowded with inclusions. The feldspar contains a considerable proportion of included small particles of black iron oxide.

Occasional crystals of titanite are noted in thin section."

Sample numbers 3138, 3139, 3140, 3141, 3142, 3143, 3144, and 3203 were obtained from both the northwest extension of the Landis granite and from the Landis granite itself. Feldspar products from 3141, 3143, and

3203 show fairly high  $K_20$  content ranging from 8.9 percent for 3203 to 12.33 percent for 3143.

Although the central geographic portion of the Landis pluton is highly urbanized and sampling is difficult, the high  $K_2O$  content of the three samples indicates a necessity for further investigation.

The area of "porphyritic granite" begins about two miles northwest of Salisbury and extends northward for approximately six miles through Davie and Davidson Counties. The rock is a medium to dark gray, massive to slightly foliated porphyritic biotite granite. The phenocrysts range up to two inches in width and six inches in length.

Twenty-nine samples of this porphyritic granite were taken from Rowan, Davie, and Davidson Counties. Five samples from this area (3340, 3141, 3145, 3148, and 3362) are included in Table 3 which shows the best feldspar ores processed. These five average 10.2 percent  $K_2O$ , and a percent yield from ore ranging from 38.2 to 21.8 percent.

Sample 3370, although unique, suggests a possible source of high potash feldspar. This sample consisted of large, two to three-inch crystals of K-spar float. These crystals are perthitic and contain veinlets of quartz, random plagioclase, biotite, and sphene.

Road cuts in the-porphyritic granite area show various stages of decomposition of the granite. In extreme cases of weathering, spar crystals are left as float on the surface of the ground.

The possibility exists for locating concentrations of the coarse K-spar crystals in alluvium or terrace deposits. In addition, if the weathering depth of the porphyritic granite were uniformly constant over a large area, open pit mining of saprolite might be possible.

Further geologic evaluation of the porphyritic granite is needed, in order to determine the most likely areas of concentration.

Henderson-Whiteside Area - The Henderson gneiss and Whiteside granite gneiss are, for the purpose of this report, grouped together due to their geographic proximity.

These two units have been sampled in southern Henderson and southeastern Transylvania Counties. The Whiteside granite has also been sampled west of the Brevard Zone in Jackson, Macon, and Transylvania Counties, but as yet no data is available.

The Henderson gneiss is typically a fine to medium-grained biotitequartz monzonite augen gneiss composed of quartz, plagioclase, potassium feldspar, biotite, muscovite and epidote, with minor chlorite, garnet and hornblende. The augen are normally composed of microcline or perthite but occasionally some plagioclase augen occur.

The Whiteside granite in the area east of the Brevard Zone is a light gray even-grained rock composed of orthoclase, plagioclase, quartz, muscovite and biotite, with minor magnetite, ilmenite, and garnet.

Geologic mapping by Livingstone and McKniff in the Cashiers-Rosman area has resulted in the division of the Whiteside into three rock units, ranging from a granitic biotite gneiss to a foliated quartz diorite.

Twenty-three samples have been obtained from this area. Two of these samples, Nos. 3187 and 3214, show high  $K_20$  content. Sample 3187 consists of weathered Henderson gneiss and the feldspar contains 10.8 percent  $K_20$ . Sample 3214 is weathered Whiteside granite and contains 12.6 percent  $K_20$ . In both cases weathering of the rock has resulted in a relative increase in the  $K_20$  content.

Further sampling in the Whiteside granite west of the Brevard Zone, and of the Henderson gneiss is in progress.

Future Investigation - Further sampling will be undertaken in the area of Dallas, Gaston County. The rock in this area is believed similar to the adamellite of York County (Butler, R. J., oral communication) and may contain high K-spar values.

In addition samples for feldspar evaluation are to be collected from the Eastern Piedmont granite area.

Samples of the Beech, Blowing Rock, Cranberry, and Max Patch granites have been collected, and depending upon results obtained, further sampling will be initiated.

Detailed geologic investigations of possible areas of concentration of K-spar phenocrysts in the porphyritic granite area of Rowan-Davie-Davidson Counties will be initiated when sampling in Areas 2 and 3 and in the Dallas area have been accomplished.

Contingent upon locating alluvial or terrace deposits in the above three-county area, a drilling program could be initiated to further define the extent of any K-spar rich zone which was found.

Table 5 Location of Samples

Area 1

|            | Area       | Area       | 2            |                            |                   |
|------------|------------|------------|--------------|----------------------------|-------------------|
| •          | Charlot    | Rolesville | -Wendell-    |                            |                   |
| Field      | Lab        | Field      | Lab          | <u>Knightdale</u><br>Field |                   |
| Sample No. | Sample No. | Sample No. | Sample No.   | Sample No.                 | Lab<br>Sample No. |
| -          | 1896A      | FG-37      | 3202         | -                          | 3129A             |
| -          | 1896B      | FG-38      | 3203         | -                          |                   |
| FG-1       | 3132A      | FG-48      | 3338         |                            | 3129B             |
| FG-2       | 3132B      | · FG-49    | 3339         |                            |                   |
| FG-3       | 3133A      | FG-50      | 3340         |                            |                   |
| FG-4       | 3133B      | FG-51A     | 3341         |                            |                   |
| FG-5       | 3134A      | FG-51B     | 3342         |                            |                   |
| FG-6       | 3134B      | FG-52      | 3343         |                            |                   |
| FG-7       | 3135A      | FG-53      | 3344         |                            |                   |
| FG-8       | 3135B      | FG-54A     | 3345         |                            |                   |
| FG-9       | 3136       | FG-54B     | 3346         |                            |                   |
| FG-10      | 3137       | FG-55      | 3347         |                            |                   |
| FG-11      | 3138       | FG-56      | 3348         |                            |                   |
| FG-12      | 3139       | FG-57      | 3349         |                            |                   |
| FG-13      | 3140       | FG-58      | 3350         |                            |                   |
| FG-14      | 3141       | FG-59      | 3351         |                            |                   |
| FG-15      | 3142       | FG-60A     | 3352         |                            |                   |
| FG-16      | 3143       | FG-60B     | 3353         |                            |                   |
| FG-17      | 3144       | FG-61      | 3354         |                            |                   |
| FG-18      | 3145       | FG-62      | 3355         |                            |                   |
| FG-19      | 3146       | FG-63      | 3356         |                            |                   |
| FG-20      | 3147       | FG-64      | 3357         |                            |                   |
| FG-21      | 3148       | FG-65      | 3358         |                            |                   |
| FG-22      | 3149       | FG-66      | 3359         |                            |                   |
| FG-23      | 3150       | FG-67A     | 3360         |                            |                   |
| FG-24      | 3157       | FG-67B     | 3361         |                            |                   |
| FG-25      | 3158       | -FG-68     | 3362         |                            |                   |
| FG-26      | 3159       | FG-69      | 3363         |                            |                   |
| FG-27      | 3156A      | FG-70      |              |                            |                   |
| FG-28      | 3156B      | FG-71      | 3364<br>3365 |                            |                   |
| <u>.</u>   | 3179       | FG-72      |              |                            |                   |
| FG-33      | 3199       | FG-73      | 3366<br>3367 |                            |                   |
| FG-34      | 3200A      | FG-74      | 3367         |                            |                   |
| FG-35      | 3200B      | FG-75      | 3368         |                            |                   |
| FG-36      | 3201       | FG-76      | 3369<br>3370 |                            |                   |
|            |            |            |              |                            |                   |

Area 3

| Henderson-Whiteside |            | <u>Miscellaneous</u> |                |                      |
|---------------------|------------|----------------------|----------------|----------------------|
| Field               | Lab        | Field                | Lab            |                      |
| Sample No.          | Sample No. | Sample No.           | Sample No.     | Location             |
| -                   | 1812       | -                    | 1942           | Eastern Piedmont     |
| -                   | 3104       |                      | · <del>-</del> | Granite Belt         |
| FG-30               | 3187       | -                    | 2000           | Eastern Piedmont     |
| FG-32               | 3193       | •                    |                | Granite Belt         |
| FG-39               | 3209A      | -                    | 3029           | Eastern Piedmont     |
| FG-40               | 3209B      |                      |                | Granite Belt         |
| FG-41               | 3210       | -                    | 3030           | Eastern Piedmont     |
| FG-42               | 3211       |                      |                | Granite Belt         |
| FG-43               | 3212       | -                    | 3058           | Blue Ridge Complex   |
| FG-44               | 3213       | _                    | 3062           | Eastern Piedmont     |
| FG-45               | 3214       |                      |                | Granite Belt         |
| FG-46               | 3215       | FG-29                | 3186           | Blue Ridge Complex   |
| FG-47               | 3216       | FG-31                | 3189           | Grandfather Mountain |
| FG-82               | 3475       |                      |                | Window               |
| FG-83               | 3476       | -                    | 3487           | Spruce Pine          |
| FG-84               | 3477       | -                    | ***            | Mining District      |
| FG-85               | 3478       | FG-92                | 3493           | Blue Ridge Complex   |
| FG-86               | 3479       |                      |                |                      |
| FG-87               | 3480       |                      |                |                      |
| FG-88               | 3481       |                      |                |                      |
| FG-89               | 3482       |                      |                |                      |
| FG-90               | 3483       |                      |                |                      |
| FG-91               | 3484       |                      |                |                      |

#### REFERENCES CITED

- 1. Butler, J. R., 1969, oral communication
- Councill, R. J., 1954, The Commercial Granites of North Carolina: North Carolina Department of Conservation and Development Bulletin No. 67, pp. 18 & 20
- Phillips, E. L., 1967, The Salisbury Adamellite Pluton, North Carolina: Southeastern Geology, Vol. VIII, No. 3
- 4. Watson, T. L. and Laney, F. B., 1906, Building and Ornamental Stones of North Carolina: North Carolina Geology and Econ. Survey, Bulletin 2, p. 95